

Biofuels – The Current Industry and Future Prospects

John Ashworth

Team Leader, Biofuels Industrial

Partnerships

NREL, Golden, CO.

Why a National Program for Clean, Domestic Vehicle Fuels?

- National security concerns diversifying our options in the face of rising fuel imports
- Reducing environmental pollution from vehicle emissions, particularly in urban areas
- Reducing greenhouse gas emissions
- Providing additional jobs and income in rural areas

Why Alternative Fuels?

- National Security
 - ◆ 97% of transportation fuels are derived from fossil fuels
 - ◆ More that 53% of US oil is imported
 - ◆ Foreign oil demand will increase to 60% by 2005
- Trade Balance
 - ◆ Oil represents over 50% of all US imports
 - ◆ 1973 oil embargo resulted in 10% GNP loss

Transportation Fuel Use is Key

Why Ethanol?

Established Ethanol Industry

- Available from domestic agriculture (corn fermentation)
- Industrial interest increasing (oil companies)
- Biomass ethanol will strengthen US farm economy
- Biotechnology improvements will continue to reduce costs
- Supporting industrial enzyme business well established

Environmental Benefits

- Oxygenates critical to attainment of CAA CO objectives
 - 39 regions in non-compliance
- Biomass ethanol decreases CO₂ by 90% and SO₂ by 70% compared to RFG
- ETBE improves combustion (all seasons)
- Ethanol is a "clean" biotechnology-based technology

Wet Mills – the Current Biorefineries

Dry Mills – Simple Ethanol & Feed Plants

Key Ethanol Production Trends

- U.S.production capacity is steadily rising
 - Adding capacity at existing plants
 - Building new plants
- ETOH production plants are getting larger
- ETOH plants are getting more efficient
- Feedstocks besides corn are being considered for ethanol fermentation

Ethanol Output has risen steadily

Historical U.S. Ethanol Production, 1980 - 2001

Geographic Distribution of ETOH Plants Growing Steadily

Dry Mills are Growing Larger

- Early plants were 5 8 million gallons
 - ◆ On-farm or near farm locations
- 1990s saw rise of 10 15 million gallon facilities
 - Many new generation farm coops involved as owners & feed suppliers
- 2001 40 million gallon turnkey plants becoming common

Growing Efficiency in Conversion of Grains to Fuel & Feed

- 2.5 gallons of ETOH per bushel of corn was a rule of thumb for years
- Now 2.7 or even 2.8 gallons per bushel
- Energy usage / gallon of ETOH has dropped dramatically
- Producers are looking for additional products besides ethanol and DDG

Growing Efficiency over Time

Benefits of Growing Ethanol Use

- Lower urban air pollution
 - ◆ Blending of ethanol into gasoline lowers toxic emissions by 30%, CO by 25-30%, & smog formation by 20% or more
- Growing market for U.S. farm products
 - ◆ 2.0 billion gallons of ethanol will require about 750 million bushels of corn
- Rural employment and income
 - ◆ 195,000 rural jobs
 - ◆ \$4.5 billion additional farm income

Traditional Comestible Biomass Feedstocks

Corn

Sugar cane

Wheat

Soybeans
Sugar beets
Cassava

The Bridge to Corn Ethanol

- Corn fiber (wet mills) or DDG (dry mills) can be pretreated, broken down with enzymes, and then converted to ethanol and other valuable co-products
- Research is underway at NREL and elsewhere to help starch ethanol industry increase ethanol production and maintain or increase value of byproducts

Bridge to Corn Ethanol (Cont.)

- NREL has been doing research on corn fiber and DDG since mid-1990s
- Aim is to increase ethanol yields of cornbased plants by fermenting of corn fiber
- Recently have started examining ways to
 - Break down fiber in DDG
 - ◆ Increase protein concentration in DDG
 - Locate and separate valuable by-products

Domestic Non-Food Biomass Feedstock Possibilities

- Agricultural residues
 - Corn Stover
 - Wheat and Rice Straw
 - Sugarcane bagasse
- Forestry wastes
 - Sawmill wastes
 - Forest trimmings
- Municipal solid wastes
- Dedicated energy crops

The Advantages of Corn Stover as a Renewable Feedstock

- 240 million tons or more of stover are grown in the U.S. each year
- If we used only 1/10 of total stover for alcohol, we could produce 16 billion gallons of ethanol or more than 9 times current U.S. ETOH production
- This would provide 10% of total U.S. gasoline consumption
- Sales of 10% of U.S. stover at \$10-20/ton would provide corn farmers with additional annual income of \$240 480 million

Stover Critical Success Factors

- Adequate supply of stover
- Ability to sustainably collect stover
 - Soil health
 - Environmental issues
 - Economic impacts of stover collection and use
- Ability to collect stover costeffectively
 - Stover costs contribute significantly to ethanol cost

The Composition of Dent Corn

Component	% Dry weight
Starch	71.7
Pentosan (as xylose)	6.2
Cellulose + Lignin	3.3
Sugars (as glucose)	2.6
Protein	9.5
Oil	4.3
Ash	1.4

from Watson, S.A. and Ramstad, P.E. 1987. *Corn: Chemistry and Technology*, American Association of Cereal Chemists, Inc., St. Paul, MN.

The Composition of Corn Stover

Ethanol & Co-Products from Ag Residues & Dedicated Energy Crops

Delivered feedstock

Pre-processing

Pretreatment (hemicellulose extraction)

Conditioning

Many different technology options exist for each of these steps

Enzymatic cellulose saccharification

Biomass sugar fermentation

Beer to
Product
and
Coproduct
Recovery

Commercialization Pathway Scope of Industry-led Commercialization **Project** Prelim. Detailed Process Testing and Commercial Studies Investigation Development Validation Launch Stage 3 Stage 1 Stage 2 Stage 4 Stage 5 Bench thru **Demonstration** pilot scale or semi-works process scale process validation integration

→ Project success requires moving from Stage 3 to Stage 4!

Corn Stover in our Enzymatic Conversion Process

The Future Sugar and Lignin Platform Biorefinery

The DOE Biofuels Program

Traditionally, the DOE Office of Fuels
Development (DOE/OFD) has had 3 major research thrusts

- Development of conversion technologies
- Feedstock development now transitioning to USDA
- Outreach and technology transfer to industry, farm community and larger public

DOE/OFD Key Activities in the Past Several Years

- Pioneer Plants
- Partnership with Corn Ethanol Industry
 - ◆ Process improvement, corn fiber
- Enzyme Sugar Platform
 - ◆ Enzymes as enabling technology
- Valuable Co-Products
- 3rd generation Biorefinery

South Table Mountain Site

STM site totals 327 acres, 136 of which can be developed.

NREL total: 607 acres (includes National Wind Technology Center)

Total capital equipment replacement value: \$75M

South Table Mountain Site - six facilities at 325,000 ft² NREL total: eight facilities at 376,000 ft² * Facilities replacement value: \$95M

NREL's Biotechnology Center has world class lab and pilot plant facilities

